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IMPACT OF FINITE BEAMS OF DUCTILE METAL1

by

P. S. Symonds and C.-F. A. Leth

(Brown University)

Abstract

An analysis is here presented of the large plastic

deformations of a beam under impact such as that due to a blow

of a massive hammer, in which one cross-section is suddenly

forced to move with a given velocity, The analysis treats both

the case in which the velocity of the struck section is main-

tained constant until the total permanent deformation is acquired

and cases of interrupted impacts in which the force at the struck

section is suddenly removed after an arbitrary contact time. A

complete solution in general non-dimensional form is obtained

in a simple manner by basing the analysis on the assumption of

"plastic-rigid" behaviort and results can be expected to be

valid when the plastic deformations are large enough. Criteria

for the validity of the present results are discussed, based on

the major assumptions of the analysis.

l. The results in this paper were obtained in the course of
research conducted under Contract N7onr-35810 between the
Office of Naval Research and Brown University.
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1. Introduction

We consider the problem of a uniform beam of arbitrary

length, initially at rest, which is subjected to a concentrated

impact load at its mid-point such that the mid-section of the

beam instantaneously acquires a velocity V which is then main-

tained constant. Bohnenblust [1]* treated the corresponding prob-

lem for the case of an infinitely long beam, in general terms for

an arbitrary moment-curvature relation. It was recently dis-

cussed again by Conroy [2], who investigated the simplifications

obtainable by neglecting the elastic part of the deformationsfand

took, in particular, moment-curvature relations of the two types

shown in Fig. 1; again only infinitely long beams were considered.

The solution presented here is another example of the

analysis of large plastic deformations in a finite structure sub-

jected to a dynamic loadt on the basis of the moment-curvature

relation of Fig. l(a). In this "plastic-rigid" type of analysis

it is assumed that infinitely large curvatures can occur at cross-

sections where the bending moment maintains the magnitude Mot

the "limit moment" or "fully plastic moment" used in limit analy-

sis of structures under static loads. The concept of localization

of deformations at such "plastic hinge" sections is assumed to be

applicable to problems of dynamic loading of structures of duc-

tile metal provided the energy absorbed in plastic deformations

greatlyexceeds that which could be absorbed in a wholly elastic

manner. Based on this hypothesis criteria were given in a

previous paper [3] for the validity of the solutions obtained

and similar criteria are given in the present paper for the new

Mers 'in square brackets refer to the Bibliography at the
end of the paper*
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solution presented here.

Earlier papers [3, 4+ t] dealt with finite beams sub-

jected to force pulses with specified magnitudes and shape. Our

main purpose in treating the present problem was to obtain a

solution which could be treated more easily experimentally than

the previous solutions obtained; the imposition of a known veloc-

ity involves fewer experimental difficulties than the application

and measurement of a specified force-time curve. The present

problem was emphasized by Vigness [6] in discussion of [3] as

of interest from the point of view of experimental verification

of the general method*

2. Analvsi

For simplicity we treat the problem of a beam moving

initially with velocity V normal to its length. At time t = 0

the mid-section is instantaneously brought to rest by contact

with a rigid stop. It is obvious that the subsequent deforma-

tions will be identical with those which would be produced if

the bar, initially at restp were struck so that the mid-section

suddenly acquires and maintains the velocity V, The beam is

taken to have uniform mass per unit length my limit moment Mo

and length 2L, A typical cross-section will be specified by its

distance x from the center of the beam, (Fig. 2).

For a sufficiently small time interval after the bar

strikes the stop, its deformation will be indistinguishable from

that of the infinite beam treated by Conroy [2]. Hence it will

be expected that the force on the beam will vary initially as

1/ V/E and that plastic hinges will occur at the mid-section and



Bll-20

at two cross-sections each at a distance xh from the center; xh

will be expected to increase initially in proportion to V/t

The analysis of the present problem will therefore be based on

the diagrams of Fig. 3. From the symmetry of the problem it is

obviously enough to consider either half of the beam. The seg-

ments OH and HB are subjected to end moments as shown. At the

center of the beam there is a reaction force R exerted by the

stop so that a shear force R/2 acts as shown on the one segment.

However, there is no shear force at cross-section x = Xhi where

the travelling hinge is located at a given instant, since this

is a cross-section where the bending moment has a relative maxi-

mum; thus dM/dx = Q = O The loading on the segments includes

also the distributed inertia forces due to the accelerations.

It can be verified that although they are changing in length, at

any instant the two segments move as rigid bodies (hinged to-

gether as shown) since at any instant the complete set of loads

is such that the bending moment reaches the magnitude Mo only

at the sections x = 0 and x = xh The lateral hinge moves out-

ward (i.e., xh increases with time) so that the segment OH

acquires a permanent deformation, but since the moment in the

interior of the segment HB is always less than Mo in magnitude

the segment to the right of the travelling hinge at any instant

is undeformed.

Let the angular velocities of the segments OH and HB

be wo and wl, respectively. Writing moment-angular acceleration

equations with respect to the fixed point 0 in one case and the
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center of gravity of the segment in the other, we obtain
1

.1mxjjd=.2M0  (1)

m(t- Xh)3 d w, = Mof (2)

12 dt

The following equation expresses the fact that the change of

moment of momentum of the half-beam OB with respect to an axis

at 0 is equal to the angular impulse of the moment Mo acting

during the time t:

.Mot : [ m(wo - w)(3t2 X- x3 ) +1 mt3 wl]" .1 mt2V. (3)

The expression in brackets is the moment of momentum at any time

t, while the last term is the initial moment of momentum of the

half-beam.

Equations (1) - (3) are the basic equations of the

analysis from which, together with appropriate initial conditions

the three unknowns xh, wot wI are to be found. It is now con-

venient to rewrite the equations in terms of new dimensionless

variables defined as follows:

1. These equations are correct despite the fact that xh is a
function of time because the velocities of elements just
to the left and just to the right of the travelling hinge
are equal at any instant. Thus although the segment of
length xh is increasing in length, the element joining it
in time t comes in with the same velocity as the end of
the segment, and there is no impulsive contribution to the
momentum.
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Q=Vwo; w' (1)

Mt

Equations (1) - (3) now take the following forms:

-' . 1- 1 (6a)

_' d' =  "12 ,,- (6b)
q (1 - 3

3 - 61 : (0- ) (3 ) + 2I. (6c)

We will henceforth use a prime to denote differentiation with

respect to q. The initial conditions may be taken as

q = 0; t = 0; 0 = 0. (7)

From Eq. (6c) this implies that (?)o = 1, so that in this type

of impact there is initially a singularity in the angular veloc-

ity at the point of impact.

We begin the solution of Eqs. (6) by differentiating

Eq. (6c) with respect to 9, making use of Eqs. (6a) and (6b) and

simplifying to obtain the relation

)2]. (8)

For completeness, we note that the above result may be derived

from a quite different viewpoint, namely by differentiating the

equation which expresses the fact (as shown in 131) that veloc-

ities are continuous at the hinge section. Equation (8) can

thus be identified as expressing the fact that accelerations are
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discontinuous across the moving hinge section

A second differentiation of Eq. (8), substitution

again of Q' and *' from Eqs. (6a) and (6b), and rearrangement

leads to the following equation for (t

1- -2 + t = 09 (9)

[(1 _ t)2J
which is to be solved subject to the initial conditions (7). A

first integration of Eq. (9) can easily be performed since the

independent variable does not appear explicitly Let ' = p(t);

then dp( ) dt d dp
d" -"a--- 2d - - -'

With this substitution Eq. (9) becomes

(l d2j
if it is assumed that p # O. Integration of the above yields

p _ _ . /2(i_.2E )l/.
df- dt eC2 2)11

Thus the general solution of Eq. (9) can be written in the form

A = A d2 + B (10)

(1- 2z) 1/4

where A and B are constants to be evaluated by means of the ini-

tial conditions Eq. (7). The numerical evaluation of the integral

in Eq. (10) is speeded by making the substitution (1 - 2z) = +s.

Integration by parts and rearrangement then leads to the following

form: q = A[e"!/ 2 (1 - 2t)3/4 2F(C) + B (11)
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where

F(t) = V2 es'l4 S esd - •
*(l-2 )

The advantage of this form appears when the integrand in Eq. (II)

is expanded in a power series; term by term integration then

leads to the following rapidly converging series for F( ):

F(t) = 0.07952 - 2e'i/(l - 2 )3/I A (1- 2-) n

n=O nJ(3 + WO

Equations (6) and (8) can now be integrated to give the dimen-

sionless angular velocities as follows:

a=-2 + 6A [1(1 - 2) 3 / 4 e " t/2 - F] - 3B (12a)

3 = - 6A [(2 - t)(l - 2t)3 1 ) e"0 1 2(1_ . + F) - 3B. (12b)2 (1 - 0)P

After applying the initial conditions (7) to Eqs. (10) and (12b)

we find that A and B must have values B = 0, A = 1/6. Thus

and q are related by

6q = e"V /2 (1 - 2t) 3 / 4 + 2\/ e" 1/ 4  s6l/4eSds - 1 (13)

j(i-2)

It can be seen from the denominator in Eq. (10) that

the above solution is valid only for 0 < t <.I* This is the
s e2

range we are interested in, as will be seen shortly,
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3. Numerical results

The deformations of main interest are the angles go

and @1 at mid-point and tip, respectively, and the permanent

curvature x of the part of the bar through which the lateral

hinge has travelled. We have the following general formulas

for the angles t 2 C

S= tdt = d (14)

1 M° 70
= Jw ldt Mo IOJ ± d (5

The change dQ of the angle of the beam across the lateral hinge

has the value
dQ = (wo - w1)dt.

Then =-dx -
Mo

V2  (1 - 2C)1/2ek (16)

(I _ )2

Numerical results are tabulated in Table I.

Tal leI

0 0 19 5 0 0 0 0. 1667

0.10 0.0008 9. 045 0.012 O.0167 0.0000 0.1665

0.15 0.0019 6.583 0.031 0.0250 0.0000 0.1661
0.20 0.0034 4 883 o.o3 0.0334 0.0001 o .1652
0.25 0.0053 3.845 o.114 o.o418 o.oo03 o.1632

0. 30 0.0078 3. 136 0. 191 0.0502 0.0007 0. 1594
0.35 0.0108 2.610 0.309 0.0588 0.0013 0.1523
0. 0 0.0144 2.191 0.491 0.0676 0.0029 0.1388

0.45 0.0191 1.829 0.786 0.0769 0.0059 0.1111
0.50 0.0265 1.421 1.421 0.0888 0.0138 0.0000

- I -
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The previous analysis is based on the configuration

of Fig. 3. This type of motion continues until the angular

velocities of the inner and outer segments become equal, i.e.,

until 0 = $. From Eq. (8) this happens when

1. 0; therefore s =1 (17a)
t2 (l-~) 2

where ts denotes the final value of the hinge coordinate. The

corresponding value of the dimensionless time is

qs = 0.0265. (l7b)

For later times q Z 1s there is a plastic hinge at

the mid-section only, and the two halves rotate as rigid bars

pinned at one end. The equation of angular acceleration of the

right-hand half, in dimensionless variables, is

dil
= - 3. (18)

Hence in this final phase of the motion we have

a = - 3n + Cl

Making use of the conditions = 0.0265, 08 = 1.421,

---- 0 = 0.0888, as given in Table I, we obtain

S= 1.500 - 3n (19a)

00 = 0.0500 + l.5q - 25q (19b)

These hold until 0 = 0 or, from Eq. (19a)9 until q = qf, where
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f mot . 500 (20a)

The corresponding final value of the angle go is

@o = O.425 MIN (20b)MO"

The growth of the deformations with time is shown in Fig. o

Some simple checks on the above results are of interest.

First, we note that the momentum relation Eq. (6c), evaluated

at the time I., becomes

3 - 6 qs = 2* s ,.

Taking values from the last line of Table I the two sides of the

equation have values

3 - 0. 1590 = 2. 841; 2 x 1.421 = 2.842

which is a satisfactory check. Again, from Eq. (6c) the time

qf at which the deformation is completed is given by

3 - 6nf = O; qf = 2

which verifies the value of Eq. (20a) computed from the tabulated

values.

Finally, the energy relations may be examined. Before

the beam hits the rigid stop it has the kinetic energy E

E = J'(m2 )V 2 = t2
2

When the motion has ceased, this energy has been spent in work

at plastic hinges. The total energy absorbed in plastic deforma-

tions is W, where
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W 2Moof + 2(gof W @if)Mo.

Inserting values from Eq. (20b) and Table I this becomes

2Mu01 2~ LV2 1. 000 m'2
2Mo(.42 )+ 2Mo(0.0750 =o)

0

Thus the necessary energy balance is checked.

We may also compare the results obtained here with those

obtained by Conroy (2]. It is there shown by equations (2) and

(20) that 129 = 2 for an infinitely long beam. Our result

should converge to this value for small C. We expand the right-

hand side of Eq. ( 13 ) as a power series in C as follows:

e'/2 (1 - 2() 3/ 1 = 1 - 2 + _(2 + o( 3 )

2

&-P 
,l)

Hence Eq. (13) reduces, for small p to

= - 2 + 0(43). (21)

Furthermore Conroy shows by Eqs. (20) and (26) that the

shear force at the center varies as + .a The moment equili-

brium for the inner part of the beam around its center of gravity

requires

Transforming this into dimensionless coordinates we get

=8 + .1 C3 of (22)3
where P = With the use of equation (6a) we getH0
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.(23)

In the limit for small ( we have ( VI29. Hence in the limit

, which agrees with the result in [2].

For completeness we finish the analysis with the calcu-

lation for the motion of the beam if the support is removed at
I2a time t = -r < D f. The subsequent motion (t > T ) is to be
0

determined by analysis appropriate to a beam acted on by no ex-

ternal loads. Such an analysis is described in M. There it is

shown that when lateral hinges are present at the instant the

central force is reduced to zero the lateral hinges then move

with constant velocity until the angular velocities become

equalized. By simple calculations, using Eqs. (20) - (29) of

Ref [4], one can find the increments in angular velocities and

displacements which occur after removal of the force at arbitrary

times rt corresponding to dimensionless times q= -O < 0,

Fig. 6 shows a curve of final deformation angles resulting from

"interrupted impacts"' of various durations, plotting M0QjmV 2

against Mo/mt 2 V. The shape of the force-time curve concerned

here is indicated in Fig. 5.

4. Criteria for Validity of Resultl

We consider now the implications for experimental com-

parisons of two major assumptions involved, namely the neglect of

all elastic deformations by comparison with plastic deformations,

and the neglect of shape changes throughout the analysis.

The first assumption can be expected to be valid [3] if

the total energy absorbed in plastic deformations greatly exceeds

the maximum possible amount of eig strain energy that could
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be stored in the beam. In the present case this implies that

2Mof = mtV2 >> M2
El

where EI is the elastic flexural rigidity. Thus for the present

results to be good approximations one requirement is that

V2 >> 127 (24a)

Alternatively the above requirement may be expressed as

2 n M2 (24b)V2

where n is a number which presumably is of the order of 10.

A further requirement is set by the assumption of

negligible shape changes, i.e., the use of coordinates referring

to the undeformed rather than to the actual beams This assump-

tion actually restricts the magnitude of the central angle go

attained only during that part of the response in which deforma-

tions are occurring at lateral hinges; when only the central

hinge is present-the equations apply to deformation angles of

unrestricted magnitude. From Table I the maximum value of go

obtained while the lateral hinges are present is 0.0888 mtV2/M0 ;

if we assume that this does not exceed about 0.15 radians, we

have the additional inequality:

0.0888 < 0,15. (25)

This imposes a limitation on the length-depth ratio of the beam,

if the requirement of inequalities (24) is taken into account.

Let (24b) be taken as an e and conbined with the inequality

(25). We obtain
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< 1.7. (26a)El O.0

But the limit moment Mo can be computed [7) as

d = Z = ao7(21 (27)

0 Y Y h)27

where the "shape factor" a is a number of the order of unity

which depends on the shape of the cross-section and has the value

1.5 for a rectangular cross-section; d y is the yield stress;

and Z = 21/h is the elastic section modulus, i.e., quotient of

moment of inertia I and half-depth h/2. Using this formula for

Mo the inequality (26a) can be written as

2n > i-na n e (26b)
2 1.7 E

Since d /E is of the order of 10-3 for steel, and ay
will probably be about 1.5, it is seen that the restriction of

small shape changes requires only that h/2t exceed about 1/100,

for n = 10. Hence it is clear that this restriction would intro-

duce no experimental difficulties.

Finally the order of magnitude of V demanded by in-

equality (24b) is of interest. We use Eq. (27) and write also

m = pA I = Ai2 I E/p= co and obtain

V Vni co(-)( a (21+c)
where

a = YE7- = speed of longitudinal elastic waves

p = mass density

A = cross-sectional area

i = radius of gyration

h = depth of beam

a = shape factor (defined in connection with Eq. (2?).
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Thus for steel with co = 16,00 ft/sec., dy/E = 10 3 and a

rectangular cross-section, if n = 10 we find that V must exceed

about 15 ft/sec.

The main purpose of a laboratory test program would be

to determine under what circumstances, if any, the plastic-rigid

type of analysis yields satisfactory results for the major plas-

tic deformations. The fundamental assumption is that elastic

deformations are negligible. To find the range of usefulness of

this assumption, a series of tests could be made with the objec-

tive of determining the value of the number n used in Eq. 24b,

above which the rigid-plastic analysis predicts deformation in

good agreement with those observed in the tests. If the elastic

deformations are the only important physical effect which is

ignored then such a series of tests will yield a definite value

of n, such that when the total energy absorbed is at least n

times the maximum possible elastic energy the beam could carry,

the present type of analysis will be suitable. A value of n

determined for the present case of velocity impact would probably

have significance for other types of problems of dynamic loading.

In any experiments other physical effects will occur

which have been neglected here, and these might turn out to be

so important that the present type of analysis does not yield

accurate results even though the criterion based on elastic

energy is satisfied. Among the physical phenomena which have

been ignored are:

(a) strain-hardenint which will occur to some degree at

cross-sections where plastic hinge action occurs;
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(b) soeed of loading effect on the yield-stress and post-

yield properties, as, for example, reported by Manjoine

[8) and Nadai and ManJoine (9];

(c) effect of transverse shear forces which are known to

reduce the limit moment below that which can be reached

in pure bending; in the present problem the shear force

at the struck section has large values in the initial

instants of the impact;

(d) finite contact area of the hammer or stop; the study

in Ref. [5] of distributed as compared with concentrated

loads showed that even a very small degree of spreading

of the load over a finite segment may appreciably re-

duce the magnitude of the final deformations;

(e) finite time of acceleration; it was assumed that the

hammer or stop was perfectly rigid and that the velocity

of the struck section was instantaneously acquired or

annihilated; since any physical hammer or stop has

finite rigidity there is a finite time of acceleration;

in fact the contact will probably be intermittent during

the initial instants of the impact, as is known to be

the case in the elastic impact of a mass on a beam.

All but one of the foregoing effects, if taken into

account, would tend to reduce the deformations below those given

by the present analysis. The single exception is the effect of

transverse shear forces, which tend to weaken the beam and hence

if properly taken into account would cause the analysis to predict

larger deformation magnitudes than those of the present theory
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If the transverse shear effect is minimized by use of compact

sections and fairly large ratios of span to depth, the other

effects would presumably predominate, and cause the present

analysis to overestimate the deformations*

Finally, it should be re-emphasized that a fundamental

presupposition throughout the paper is that the material has

sufficient ductility under dynamic conditions so that rupture

does not occur before the predicted final deformations are

attained. The present type of analysis should be regarded as a

basic one, particularly attractive for its simplicity and

generality, but which may have to be refined in particular cases.

Carefully planned and interpreted tests are needed. They will

be an invaluable aid in assessing the range of usefulness of

the present type of analysis and in showing the directions in

which refinements are most urgent.
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